Head Impulse Test – Overview

- First described by Halmagyi and Curthoys (1988) as a bedside test of the vestibulo-ocular reflex (VOR)
- Consists of monitoring eye movements as the patient fixates on a stationary target while the head is moved briskly to the right or left in the plane of lateral semicircular canals
- The test can be performed in the planes of right anterior-left posterior or left anterior-right posterior canal pairs but is technically more challenging

Head Impulse Test – Bedside Test Procedure

- Examiner stands in front of the patient and holds his or her head
- Patient is asked to look at a target straight ahead (examiner’s nose?)
- The head is rotated right or left unexpectedly using small-amplitude high-velocity high-acceleration movements (head impulses)
- Normal individuals can maintain a steady gaze but patients with deficient VOR cannot keep up with high-velocity head turns and generate “catch-up” saccades after head impulses toward the damaged side

Head Impulse Test – Limitations of Bedside Test

- Early experience with bedside head impulse testing produced mixed results
 - Results from caloric and head impulse tests did not always match
- Limitations
 - It is subjective – Must rely on the examiner’s skills to detect catch-up saccades
 - The examiner has no feedback as to how well and how fast head impulses are delivered
- A better understanding of the underlying mechanisms is needed to improve clinical usefulness of the test

- Look for catch-up saccades in the plane of paired semicircular canals
Head Impulse Test – Mechanism

- There is an asymmetry between excitatory and inhibitory neural responses of each semicircular canal (greater dynamic range for excitation)
 - Excitation from tonic level of ~100 up to a maximum of ~400 spikes/sec
 - Inhibition from tonic level of ~100 down to a minimum of 0 spikes/sec

Head Impulse Test – Normal Responses

- For natural head movements, changes in the neural firing rates are proportional to head velocity
 - Neural responses from right and left are symmetrical for slow head movements
 - The signal to the oculomotor system is the difference between right and left neural responses
 - $VOR\ Gain = \frac{\text{Eye Move.}}{\text{Head Move.}} \approx 1$

Head Impulse Test – Right Vestibular Lesion

- For head impulses toward the side of lesion, the neural input to the oculomotor system is no longer proportional to head velocity
 - The resulting eye velocity does not match head velocity and the eyes fall short of target
 - $VOR\ Gain = \frac{\text{Eye Move.}}{\text{Head Move.}} \ll 1$ (decreases with increasing head velocity)
Head Impulse Test – Right Vestibular Lesion

- For head impulses away from the side of lesion, the neural input to the oculomotor system is reduced but to a lesser extent
 - The resulting eye velocity is closer but still does not match head velocity and the eyes fall somewhat short of target
 - \(\text{VOR Gain} = \frac{\text{Eye Move.}}{\text{Head Move.}} < 1 \) (decreases with increasing head velocity)

Head Impulse Test – Catch-Up Saccades

- Catch-up saccades reposition the eyes on the target
- Catch-up saccades that occur after head impulses are called overt saccades
- Overt saccades are visible and can be detected by an experienced examiner during the bedside test without any additional equipment

Head Impulse Test – Catch-Up Saccades

- Covert saccades may not reposition the eyes exactly on the target if the head impulses are unpredictable
- In those cases, a secondary catch-up saccade, most likely an overt saccade, is needed to reach the target
 - The secondary saccade will usually be smaller but will have the same intersaccadic latency as the primary covert saccade
 - In the unlikely event of the primary covert saccade overshooting the target, the secondary catch-up saccade will be in the opposite direction
Head Impulse Test – *Objective Methods*

- Objective methods have been developed to identify covert saccades using the scleral search coil method, the gold standard for accurate measurement of high velocity eye movements (Weber et al, 2008)
- Alternative methods based on analyzing video images from high-speed cameras have been introduced because routine clinical use of the search coil method is cumbersome

Head Impulse Test – *Validity of Video Method*

- Validity and clinical usefulness of head impulse testing using the video measurement method depends on:
 - Accuracy of eye movement measurement methods
 - Typical VOR-Mediated eye movements can exceed 100°/sec
 - High-speed high-resolution cameras are needed to differentiate slow and fast eye movements
 - The device must be compared with the search coil method
 - In at least one case, video recordings have been validated by comparing the results to the search coil method (Curthoys et al, 2010)

- Examiner’s ability to deliver appropriate head impulses
 - Examiner must be able to produce unpredictable head impulses that cover different head velocities
 - Device should be able to detect and reject inappropriate head impulses
 - Feedback to the examiner can improve performance
 - Monitoring patient’s compliance with instructions can improve the test result

— Accuracy of head movement measurement methods
 - Usually measured either through an apparatus worn by the patient or by tracking the movements of a fixed point on the head
 - Design and the fit of the apparatus can greatly affect the accuracy
 - Accuracy should be verified by comparing the results to measured values from a firmly affixed sensor such as one embedded in a bite-bar.
Head Impulse Test – Criteria for Abnormality

• Presence of catch-up saccades (overt and covert)
• VOR gain (slow eye movement / head movement where head/eye movements can be based on position, velocity, or acceleration)
• Gain asymmetry (difference between VOR gain for rightward and leftward head impulses)

Head Impulse Test – Oculomotor and VOR Interaction

• Head impulse responses for head velocities below 50⁰/sec are mediated entirely by the tracking (smooth pursuit) mechanism of the oculomotor system
• Both oculomotor and VOR mechanisms contribute to head impulse responses for head velocities between 50-100⁰/sec (the ratio varies by age and other factors)
• Head impulse responses for head velocities above 100⁰/sec are mediated entirely by the VOR

Head Impulse Test – Normal

• VOR gain in normal individuals is approximately 1
 – Depends on whether the test is done in light or darkness
 – If in light, the gain is usually higher when the fixation target is close
Head Impulse Test – *Unilateral Lesion*

- VOR gain is reduced for head impulses both toward and away from the side of lesion but it is more significant for head impulses toward the side of lesion
 - VOR gains of higher than 1 have been reported during acute attacks of Meniere’s

Head Impulse Test – *Bilateral Lesion*

- Head impulse testing can be used in place of the rotation chair to assess patients with bilateral caloric weakness
 - Provides an objective measure for the extent of loss
Head Impulse Test – *Spontaneous Nystagmus*

- Spontaneous nystagmus will appear as spikes in the eye velocity tracing
 - Right-beating nystagmus produces spikes in the same direction as eye movements following *left* head impulses
 - Left-beating nystagmus produces spikes in the same direction as eye movements following *right* head impulses
 - Unlike catch-up saccades, spikes for spontaneous nystagmus can occur before or after head impulses
 - For nystagmus that beats away from the side of lesion, spikes appear in the opposite direction of eye movements following head impulses toward the *intact* side

Head Impulse Test – *Compared to Caloric Test*

- Caloric
 - Independent assessment of right and left ears
 - Relative measure of right vs. left ear
 - Low-frequency
 - Limited to lateral canals
 - Not the natural mode of vestibular stimulation
 - Time-consuming

- Head Impulse
 - Independent assessment of right and left ears
 - Absolute responses of each ear!
 - Broadband
 - Can test vertical canals
 - Natural vestibular stimulus
 - Can be performed in few minutes

The results may not match because they are not the same test! (similar to audiogram in different frequencies)

Head Impulse Test – *Compared to Rotation Testing*

- Rotation chair
 - Typically, chair velocities are not adequate to create VOR asymmetries
 - Even for high velocity rotations, head accelerations are far below those generated during head impulses
 - Is not as effective in independent assessment of each ear
 - Requires large space

- Active head rotation test
 - Does not provide independent assessment of each ear
 - May activate neck receptors thus providing results not directly mediated by VOR
 - Head velocities are lower than those in head impulse testing (Della Santina et al. 2002)
Head Impulse Test – Compared to VEMPs

- Both tests provide independent assessment of each ear
- Results from VEMPs and head impulse testing complement each other and provide a complete assessment of each vestibular system
 - VEMPs provide assessment of otoliths
 - Head impulse testing provides assessment of semicircular canals
 - Combining the results from both tests may distinguish between labyrinthine and vestibular nerve lesions

Head Impulse Test – Clinical Usefulness

- A simple test of VOR that can be performed quickly to independently assess all three semicircular canals in each ear over a wide range of head velocities
- In case of acute vertigo, can differentiate between cerebellar strokes and peripheral vestibular lesions (Newman-Toker et al., 2008)
- Can be used for serial testing such as in monitoring vestibulotoxicity
- Can be modified for testing children
- More widespread clinical studies are needed to verify and validate the objective methods of head impulse testing

Acknowledgement

- Parts of this presentation are based on the work of Halmagyi, Curthoys, and their associates. See www.headimpulse.com for a complete list of references.